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Utilizing Topology to Generate and Test Theories of Change

Jonathan E. Butner, Kyle T. Gagnon, Michael N. Geuss, David A. Lessard, and T. Nathan Story
University of Utah

Statistical and methodological innovations in the study of change are advancing rapidly, and visual tools
have become an important component in model building and testing. Graphical representations such as
path diagrams are necessary, but may be insufficient in the case of complex theories and models.
Topology is a visual tool that connects theory and testable equations believed to capture the theorized
patterns of change. Although some prior work has made use of topologies, these representations have
often been generated as a result of the tested models. This article argues that utilizing topology a priori,
when developing a theory, and applying analogous statistical models is a prudent method to conduct
research. This article reviews topology by demonstrating how to build a topological representation of a
theory and recover the implied equations, ultimately facilitating the transition from complex theory to
testable model. Finally, topologies can guide researchers as they adjust or expand their theories in light
of recent model testing.
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Psychological scientists develop formal descriptions of human
behavior and psychological processes by generating theories,
translating theories into statistical models, and testing these models
against empirical data. This process has proved challenging be-
cause our theories often depict complex nonlinear patterns of
change within and between individuals over time, but our statis-
tical techniques only capture a small portion of our theories.
Sewall Wright’s (1921) innovation of path diagrams provided a
method of using visual tools to generate model and equation forms
that fundamentally changed psychological research by equipping
researchers with a method to express their theory in flow chart
form and test their model against data. Techniques such as scat-
terplots in regression further anchored our understanding of the
math that links theory to data (Friendly & Denis, 2005). As a result
of these advances, statistical models were able to capture multiple
simultaneous relationships, but struggle with complex nonlinear
patterns and changes within and between people over time.

In recent years, researchers developed models such as dynamic
factor analysis (DFA; Molenaar, 1985; Molenaar & Campbell,
2009; Molenaar, De Gooijer, & Schmitz, 1992; Wood & Brown,
1994), latent difference score modeling (LDS; Hamagami &
McArdle, 2001; Hawley, Ringo Ho, Zuroff, & Blatt, 2006; King et
al., 2006; McArdle, 2001, 2009), and latent differential equation
modeling (LDE; Boker, Deboeck, Edler, & Keel, 2010; Boker,

Neale, & Rausch, 2003; Butner & Story, 2011; Chow, Ram,
Boker, Fujita, & Clore, 2005; Deboeck, Montpetit, Bergeman, &
Boker, 2009; Helm, Sbarra, & Ferrer, 2012; Nicholson, Deboeck,
Farris, Boker, & Borkowski, 2011) to capture nonlinear patterns
and changes within and between people over time. Unfortunately,
these models have advanced to such a degree that our current
graphical tools may be insufficient to depict them. Whereas these
advanced models can represent complex nonlinear theories, the
path diagrams they generate are virtually incomprehensible, as
they require complicated model structures to represent change (as
is the case for LDS) or data transformations that obscure interpre-
tation (the case for LDE and DFA). As a result, researchers may
find it difficult to translate their theories into these advanced
statistical models.

In this article we propose the use of an additional graphical
representation that is capable of capturing complex theories and
seamlessly translating them into testable models. This additional
graphical representation is called a topology, and is typically
communicated as an elevation map of some geographical terrain.
More formally, a topology is a graphical representation of differ-
ential equations, sometimes called a state space, phase space,
vector field, or phase portrait (Abraham & Shaw, 1992; Baker &
Gollub, 1996; Gottman, Murray, Swanson, Tyson, & Swanson,
2002; Kantz & Schreiber, 1997; Kelso, 1995; Kugler & Turvey,
1987). Therefore, topology is not confined to merely describing
one’s change in elevation as one traverse’s some terrain, but can be
applied more generally to describe anything, like behavior or
psychological constructs, that changes over time.

We will argue that a topological map of one’s theory can aid in
translating the theory into a testable statistical model. First, topol-
ogies can be used to represent very complex and nonlinear theo-
ries—like many theories of psychological processes. Second, to-
pological maps are generated with mathematical equations (much
like fitted lines in scatterplots), from which a path diagram and
formal equation can be derived. Therefore topological maps can
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bridge the gap between complex theory and often intractable
statistical techniques.

The connection between topological maps and statistical models
of change has been made by others (Boker & Nesselroade, 2002;
Gottman et al., 2002; Liebovitch, Peluso, Norman, Su, & Gottman,
2011). Researchers who use LDS, LDE, and DFA techniques often
describe the topological features implied by a model, but the order
of progress presented in articles is often theory, statistical model,
and then implied topology. Generating topologies as a first step in
model building will help bridge the gap between theory and
statistical models. Researchers less familiar with topologies and
statistics may assume that an equation needs to be established
before graphically displaying it as a topological map. Instead, we
suggest that the order should be reversed in the scientific process.
By reversing the order, researchers would theorize using a topo-
logical map and then derive the statistical equation to test the full
extent of their theory—similar to the way path diagrams are used
in conjunction with structural equation modeling today. In doing
so, researchers may find that topology closes the gap between
theory and statistical model without conceding the richness of their
theory.

The goal of this article is to provide a tutorial on how to move
from theory to topology, and from topology to testable equation
form. We will integrate our approach with recent advanced statis-
tical models and demonstrate how these models can be simplified
via topology, making them more accessible. In order to tie our
proposed process together, we will use a continuing example with
real data that investigates the complex relationship of dyadic affect
regulation. This example is meant to highlight major steps in the
process of moving from theory to topology and ultimately to
testable equation. We also provide a glossary of terms in the
Appendix, since much of the jargon from topology may be unfa-
miliar to the reader.

A Case for Topology

Psychological researchers are faced with the daunting task of
explaining and predicting behavior given a potentially infinite
number of variables (Meehl, 1978). Cronbach (1975) summarized
the sheer complexity of trying to capture human behavior by
stating: “Once we attend to interactions, we enter a hall of mirrors
that extends to infinity” (p. 119). In other words, there are nearly
an infinite number of possible interactions, and many of the
phenomena observed in the laboratory may be very different if
these higher order interactions are taken into account. Cronbach
urged scientists to be explicit about the precise context under
which a variable is being observed, as it will likely change in the
presence of other unobserved variables. As a result, many large
effect sizes established in laboratory settings were absent once the
construct of interest was tested outside the restricted context in
which it was observed (Shoda & Mischel, 2000). Cronbach posited
that in the real world, the problem of identifying a causal relation-
ship may be intractable given the potential of many variables
interacting within and between individuals over time.

One conclusion from Cronbach’s critique is dismay; another and
more productive outcome is a reexamination of our methods and
statistics that may be unknowingly limiting tests of our theory
(Watson, 1913). For generations psychology has relied heavily on
statistical models such as analysis of variance and other varieties

of the general linear model, which inherently constrains our ability
to assess the fit of our complex theory to the empirical data.
Models of change, on the other hand, may potentially resolve
Cronbach’s hall of mirrors or at least resolve some of the com-
plexity.

LDS, LDE, and DFA are a series of statistical models that focus
on change in constructs over time. Many of these models are
derived from dynamical systems theory, a theory on how multi-
component systems interact to form emergent complex patterns of
change through time. In a systems approach, the higher order
interactions referred to by Cronbach constitute emergent pattern-
ing where multiple variables and contexts are pushing and pulling
one another in a coordinated dance over time. This dance generates
temporal patterning that is descriptive of the overall system, and
these patterns can be depicted through models of change.

In sum, psychological processes are often more complex than
the statistical models used to represent them. Contemporary mod-
els have been developed that are capable of reflecting more com-
plex and nonlinear theories (Boker, 2001; Boker & Nesselroade,
2002; Butner, Amazeen, & Mulvey, 2005; McArdle, 2001), and
idiographic approaches have also been developed that allow for the
analysis of intraindividual change (Hamaker, Dolan, & Molenaar,
2005; Molenaar, 2004; Molenaar & Campbell, 2009; Nesselroade
& Molenaar, 2010). These advanced models of change may re-
solve these issues, whether through autoregressive, change score,
differential equation estimation, or direct derivative estimation
approaches. Despite the fact that these techniques are beginning to
capture the complexity that our theories demand, there are still
challenges in translating our theories into testable statistical mod-
els without extensive statistical training.

To solve these problems, we propose using a topological map as
a midstep between theory and testable equation. As a graphical
representation of change, topological maps can capture all of the
techniques (e.g., LDE, DFA) developed to deal with nonlinear and
intraindividual changes and can therefore be used to represent
complex theories. In addition, all changes over time, within and
between people, are captured by the same topological representa-
tion. Finally, after testing one’s theory via topology, expansions
and adjustments to the theory can be aided by the topological
representation. In the next section we introduce the idea of a
topology and demonstrate how to translate theory into a topolog-
ical representation.

Topology

A topology is a graphical representation of differential equa-
tions, sometimes called a state space, phase space, vector field, or
phase portrait (Abraham & Shaw, 1992). These tools are often
central to dynamical systems theory, but more importantly many of
the advanced methods, such as LDS and LDE, imply a topology.
In this tutorial we will focus on building a topology that reflects a
theory and then examine the equivalent equation form. Although
topologies have precise mathematical definitions, we will begin
our discussion with the more colloquial understanding of a topol-
ogy. Figure 1 is a topographical contour map of the area behind the
University of Utah. The lines help identify altitude so that we can
get a sense of mountains and valleys—they show a third dimension
in a two-dimensional representation (north–south being the y-axis
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and east–west being the x-axis, where the contour lines represent
the third dimension of altitude).

If we were to imagine hiking in this area, we can see that
valleys, peaks, and ridges would impact the trajectory of our hike
in terms of the probabilities and ease of where we are likely to
wander. The mountains and ridges, in essence, guide the likely
paths we would follow. It is important to realize that they do not
entirely constrain where we might go, but rather capture a degree
of likelihood.

During this hike we wear a Global Positioning System that
tracks our location every minute, and from this it is possible to
create vectors showing where we are, where we are going, and
how fast we are moving at any point in time. Arrows going
downhill are going to be longer because we would be walking
faster than on flat terrain, where the arrows would be shorter. In
our trek we might also walk uphill, creating substantially shorter
vectors because of our slowed pace. Now imagine repeating this
process until we have started our trek at all possible places on the

Figure 1. A topographical map of an area behind the University of Utah (U.S. Geological Survey 7.5= map
generated with CalTopo.com; http://caltopo.com/map.html#ll�40.79014,-111.82072&z�16&b�t) depicting
mountains and ridges with valleys between them.
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map, going in all possible directions from those places. We would
then have a map covered in vectors that describe where we are
likely to go over time given a particular starting location. The
vector field might look something like Figure 2. Notice that only
the longest vectors from each location are represented on the map.
In our example, we can imagine that our path led us both up and
down the same hill, with the uphill vectors being much shorter than
the downhill vectors. In this instance only the downhill vectors are
displayed because the downhill vectors also represent what we
would have to overcome in order to walk uphill. Therefore, the
vectors displayed represent a combination of the likely path we
would follow from the area local to a given vector and the effort
it would take to diverge from this path.1

A One-Dimensional Topology

Applying topology to psychology merely requires replacing
direction (north/south and west/east) with psychological variables
of interest. To understand all the underlying concepts, we will
focus on a single-outcome, negative affect from a study of 48
happy couples who completed a daily diary survey for 21 consec-
utive days (this sample is reported in detail in Butner, Diamond, &
Hicks, 2007). Affect and emotion regulation can both impair and
enhance mental and physical health (see Diamond & Hicks, 2004,
for a review), and thus how individuals are able to manage nega-
tive affectivity can have far-reaching implications. From an indi-
vidual viewpoint, part of this is a process of staving off and

buffering events that lead to negative affectivity so that their
impact is limited in scope and time. Interpersonal interactions,
especially from romantic partners, are believed to be central to
buffering and also sometimes incite these negative affectivity
occurrences (Gable, Reis, & Downey, 2003; Reis, Sheldon, Gable,
Roscoe, & Ryan, 2000). We will begin with a relatively simplistic
representation of negative affect and build up to a complex theory
of how couples might interact graphically and test the resultant
equations to the data.

Figure 3 shows a hypothetical graphical representation of where
negative affect tends to move over time. Graphically representing
the possible values as well as the change in the values of a variable
is called a state space, phase space, or vector field (the phase
portrait is the integral of the vector field and thus is read in the
same way as the topographical map of Utah). Notice that the plot
is rather difficult to read because the vectors are occluding the
scale line for negative affect. To help us read the graph, we placed
the hidden dimension of change (i.e., the vector lengths) on the
y-axis where positive change is represented by higher values of
change and negative change is represented by lower values of
change in Figure 4.

The two-dimensional representation of a one-dimensional state
space shows several key concepts. In Figure 4, we included a
horizontal line where no change would occur. This is analogous to
the lowest point in a one-dimensional valley. In theory all values
of negative affect would move toward this value of negative affect
through time—the homeostatic target usually a report of low
negative affect.2 These are points of no change, valleys, sinks, or
attractors (Abraham & Shaw, 1992; Baker & Gollub, 1996; Kugler
& Turvey, 1987), because the variable (e.g., negative affect)
moves toward this point in time. More generically, this point is
called a set point because all the behavior of the system (e.g.,
negative affect) is depicted in relation to this point.

Attractors are not the only topological feature in a one-
dimensional state space. A value of negative affect that we rarely
observe and are driven away from is known as a repeller. Like
attractors, repellers also have a set point, which is like a mountain
peak. We could stand at the peak of the mountain, but the moment
we begin to move in any direction, we quickly move away from
the peak. So, repellers generate change away from the set point
rather than toward it. In a one-dimensional topology repellers
function as the borders between two attractors. Therefore, regions
on one side of the repeller will share the same movement through
time (e.g., toward the same attractor) and those on the other side of
the repeller will share a different region of collective movement
through time. In this case, Figure 3 would show arrows moving
away from the set point.

Figure 4 also shows how topology is directly related to models
of change, since the vectors of where and how fast the value of

1 This map would capture the behavior of many folks walking through
this area under many circumstances. However, we can actually imagine a
different vector map from a rock climber with bad knees, for example, who
might hike much faster up the mountains and be cautious on the declines.
That is, we can imagine variables that can alter the features of the map
itself.

2 The proper representation for a homeostatic target of negative affect
would likely be no negative affect. However, we wanted to show how
values would be pulled from both sides (values above and below) toward
the target over time.

Figure 2. A velocity flow field of Figure 1 where the arrows show the
likely progression and relative rate at which our path would change from
a grid of starting locales of Figure 1.
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negative affect changes in time are captured through the hypothet-
ical hidden dimensions, much like altitude. Unlike a hypothetical
time series we might observe, time is implicit in topology in that
we can start at any point and ask where one would likely end up.
Furthermore, we can begin to see the relationship between data,
analysis, and topology in that Figure 4 could be implied from a
simple scatterplot relationship where change in negative affect is
the outcome and current negative affect is the predictor. Figure 5
shows a time series and a scatterplot of one participant’s negative
affect over time, and the subsequent best fitting straight line.
Notice that in the time series data (Figure 5A), negative affect
tends to move toward lower values (e.g., �1.25), and these are the
same values where we expect no change (e.g., an attractor) on
Figure 5B. In the Equations of Change section, we will explicitly
detail the translations between topology and equation.

The one-dimensional representation of negative affect is overly
simplistic for our theory of affect regulation in that it depicts
individuals as being drawn toward the same level of negative
affect—the same set point or even a single individual homeostati-
cally hovering around a single value. It may not be theoretically
appropriate to assume that all individuals will settle on the same
level of negative affect. Nor may it be appropriate to assume that
a single individual will function homeostatically—it might be
difficult to calm down once negative affectivity begins. This
requires a topology that allows for different attractive homeostatic
values of negative affect (i.e., different set points). Figure 6 is an
example of a one-dimensional state space, a two-dimensional
analog showing the hidden dimension of change, and an actual
individual’s data who showed this kind of behavior in his or her
daily diary. Here we can envision observing a time series stuck in
one basin of attraction (i.e., low negative affect) or the other basin
of attraction (i.e., high negative affect) while also representing the
difficultly of moving between them. In order for the value of
negative affect for an individual to move from one attractor to
another requires that it overcome the repulsive force of the repeller
that exists between the attractors. In essence, the repeller depicts
the resistance to calm down or get stuck in a state of negativity.

Behaviorally, the topology implies trajectories that hover around
low negative affect, hover around high negative affect, and switch
between them (albeit requiring the ability to overcome the repel-
ler). Allowing for multiple set points demonstrates how a topology
can allow for different people or the same person at different
points in time (as is illustrated in the person’s data in Figure 6) to
exhibit different behaviors within the same topology, and ulti-
mately the same equation.

Containing multiple set points is not the only topological feature
that can be adjusted to meet the demands of a complex theory, but
the strength and weakness of set points can be altered as well.

Consider Vallacher, Nowak, Froehlich, and Rockloff’s (2002)
examination of the strength of positive self-evaluations as a func-
tion of positive ideations. In this study, participants moved a
mouse around a central target on a monitor while listening to a
prior recording of themselves. The prior recording consisted of
thoughts the participants had expressed about themselves. Partic-
ipants were instructed to move the mouse closer to the central
target when they felt that a thought they heard in their recording
was positive and away from the central target when they felt a
thought was negative. Prior to listening to the recordings, partic-
ipants were primed to recall either positive or negative past actions
(or not primed to recall past actions). Participants who were
primed to recall positive past actions moved the mouse closer to
the central target more often than the negatively primed partici-
pants. In doing so, the time series recording of the mouse position
for those in the positive prime condition created longer vectors that
were directed toward the central target. This demonstrates that a
set point can be strengthened or weakened based on an additional
variable (i.e., positive/negative prime).

Variables that have the capacity to alter the topology are known
as control parameters (Abraham & Shaw, 1992; Butner & Story,
2011; Kugler & Turvey, 1987). Control parameters have the ability
to alter topological features in one of three ways. First, they can
strengthen or weaken an attractor or repeller. Second, they can
move a set point to a different location relative to other set points.
Third, control parameters can drastically change the topology by
completely extinguishing set points or turning it into a different
kind of topological feature (e.g., change an attractor into a repeller,
or vice versa). The flexibility to allow additional variables to alter
the topology makes this graphical representation ideal for captur-
ing the more intricate features of our theories.

Knowing that topological features can be altered in a variety of
ways, let us return to Figure 5 depicting a single attractor for
negative affect. In Figure 5, we plotted the change in negative
affect at time (t) on the y-axis and negative affect at time (t) on the
x-axis. Where the line crossed the 0 value on the y-axis was
the point at which negative affect ceased to change, meaning it was
the set point. Theoretically, we can imagine that the strength of
one’s set point for negative affect might be altered by their part-
ner’s negative affect, capturing how partners are able to buffer or
exacerbate problems (Campbell, Simpson, Boldry, & Kashy, 2005;
Collins & Feeney, 2000).

Set Point 

Nega�ve Affect 
Low High 

Figure 3. A one-dimensional state space where arrows point to where
values of negative affect move toward in time.
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Figure 4. A one-dimensional state space where the hidden dimension of
change in negative affect is shown on the y-axis. The occluded horizontal
arrows from Figure 3 correspond to the vertical lines in Figure 4. In this
case, all changes fall on a straight line.
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Figure 5. A time series (A) and scatterplot (B) representation of one person’s negative affect over 21 days. In the
state space (B), where the regression line crosses the 0 value (0 change) is the set point. The slope of the line indicates
attractiveness/repulsiveness and strength of attraction. In the time series, the set point is the value of negative affect
that the data keep returning to in time. Extreme deviations exist but are followed by a change back toward that point.
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Figure 6. A one-dimensional state space with (A) and without (B) the hidden dimension of change shown with
two stable attractors at high and low negative affect and a repeller separating them. The figure shows a time
series of one individual (C) and the state space of that same individual (D) showing two attractors—one at low
negative affect and one at moderate negative affect. This individual showed a pattern of getting stuck at moderate
negative affect sometimes with the repeller indicating the resistance of switching between the states.
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Figure 7 depicts the change in negative affect for females as a
function of their male partner’s level of negative affect (this graph
was generated from the results of a multilevel model with female’s
affect, male’s affect, and a female by male affect interaction
predicting female’s change in negative affect). The line with the
steeper slope (partner is 1 standard deviation above his mean
negative affect) represents a stronger attractor because a one-unit
change on the x-axis results in a larger change in negative affect—
negative affect occurrences away from the set point will induce
greater change, moving negative affect more quickly toward the
set point. Conversely, the line with the shallower slope (when the
male partner is at average negative affect) depicts a weaker attrac-
tion. The difference between the slopes is the relative difference in
the strength of the attractors. From a theoretical standpoint, we
have just demonstrated a topology that depicts affect buffering in
close relationships. That is, when a male partner is experiencing
increases in negative affect, the female partner tends to yoke in her
own negative affect around the set point of low negative affect.

Instead of strengthening or weakening the attractor, a control
parameter can also move the location of the set point—the value of
negative affect the individual is drawn toward. In this instance,
where the line crosses the 0 value on the y-axis is moved to a
different location on the x-axis. For example, in our figure the set
point for negative affect when the male partner was at average
negative affect was a score of 4 on some scale (indicating the value

one would move toward in time); a control parameter could
move the set point to 7 on the same scale. Figure 7 illustrates these
properties in that the set point for females is slightly higher when
the male partner’s negative affect is 1 standard deviation above its
mean. Taken together, when male partners experience higher neg-
ative affect days, the attractor for the female partner’s negative
affect strengthens and moves to a slightly higher value. Thus, the
male partner’s negative affect buffers (strengthens the low state),
but also slightly pulls up, the value the female partner regulates
toward.

Finally, when a control parameter switches a topological feature
from an attractor to a repeller, the corresponding line in Figures 4
and 7 would change from having a negative slope to having a
positive slope. To better understand the distinction, begin by
considering a single value of negative affect along a negatively
sloping line but above the 0 value on the y-axis. At this point,
notice that the y-axis predicts a decrease in negative affect, which
would move the point down on the x-axis, closer to the set point
(where the sloped line crosses the 0 value on the y-axis). Now
consider another value of negative affect along the same nega-
tively sloping line but below the 0 value on the y-axis. This time
the y-axis predicts an increase in negative affect at the next point
in time, moving you closer to the set point again. By changing the
slope of the line from negative to positive, this pattern reverses—a
value of negative affect above the set point would move toward a

Figure 7. One-dimensional state space of female’s negative affect with the male partner’s negative affect as
the control parameter. When males are higher in their negative affect, females’ attractor becomes stronger
(steeper slope) and increases slightly (higher set point value). This was generated from a multilevel model with
change in female’s negative affect as the dependent variable and female’s negative affect, male partner’s
negative affect, and a female by male interaction.
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higher value of negative affect and a value below the set point
would move toward a lower value of negative affect—generating
a repeller.

Two Dimensions

Figure 8 is a two-dimensional state space representation of
negative affect and partner’s negative affect drawn from a pair of
simultaneously estimated multilevel model equations (actor–
partner models using change in male and change in female nega-
tive affect as outcomes; predictors were group centered to focus on
intraindividual change). Here we represent both the partner’s neg-
ative affect and one’s own negative affect through time and looked
at the change of both simultaneously. The end result would be the
two-dimensional state space with the female partner’s negative
affect on one axis and the male partner’s negative affect on the
other, both changing through time. Change in negative affect is
represented by the arrows, with the darkness of the arrows repre-
senting larger values of change. The model represented here is
relatively simplistic for how we might theorize affect coregulation,
but is illustrative. Implicit within the state space would be set
points that define the location of topological features, the places
where we would hypothetically observe no change for the part-
ner’s negative affect and one’s own negative affect, respectively.

In addition, there are areas in the topology where only one out-
come is changing at a time; these areas are known as a null
cline—equations in xy space that represent no change in x or no
change in y. Null clines are critical to converting a state space into
testable equations. In the Equations of Change section, we will
demonstrate how to go about identifying the null clines and their
usefulness.

With a two-dimensional state space there are several possible
types of topological features we might observe, but most can be
captured as a function of four common ones (Abraham & Shaw,
1992). The four common features are fixed point attractors, fixed
point repellers, saddles (or separatrices), and limit cycles. We will
continue to use negative affect within couples as an example in
demonstrating each of these features. Our goal will be to generate
a topology that can represent the regulation of both the male and
female partner negative affect simultaneously.

The fixed point attractor is the two-dimensional valley (the
set point is the lowest point in the valley) as seen in Figure 8.
It would be the value of one’s own and one’s partner’s negative
affect that each person is drawn toward. For example, we
observe a fixed point attractor of the combination for low
female negative affect and male partner negative affect (the 0,0
coordinate in Figure 8).

Figure 8. A two-dimensional state space of the male’s negative affect and female’s negative affect where both
are changing through time. This depicts a two-dimensional fixed point attractor. Each partner’s level of negative
affect moves toward a specific point (graphically represented here as 0,0). How quickly a given partner’s affect
changes depends on how far he or she is from the fixed point attractor.
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The fixed point repeller is analogous to a mountaintop, where
the set point is the peak. The values of self negative affect and
partner negative affect for an individual would always move away
from the value represented by the repeller. Low female negative
affect and male partner negative affect may function as a fixed
point repeller, where the two states are incompatible such that
female negative affect or male (or both) negative affect changes.

Saddles can be conceptualized as ridgelines, where they are
attractive in one direction and repulsive in another. They often
separate the state space into basins of attraction. where each side
of the saddle has different attractive properties (e.g., pulled to a
different fixed point attractor). For example, there might be a
saddle between low female negative affect and low male negative
affect as one attractor and high female negative affect and high
male negative affect as the other attractor (this description of two
attractors with the saddle between them will be the analog to our
theory shortly). All of the trajectories on one side of the saddle get
drawn toward one attractor, while all trajectories on the other side
get drawn the other way. As a result, midlevels of female and male
negative affect exhibit the behavior of a repeller, pushing you to
one side or the other.

Limit cycles are the equivalent of a looped trail in a two-
dimensional space, where the values on some variable continue to
repeat, but not necessarily repeat the same value each time. For
example, we could imagine a loop between female negative affect
and male partner negative affect where we are constantly cycling
between low to middle to high and back down again. This is the
topological representation of oscillations, in which the set point in
the two-dimensional state space is the point we oscillate around.

Combining these elements allows for many other possibilities
that expand the utility of topological representations when depict-
ing complex theories. For example, one might theorize the pres-
ence of spiral attractors (spiraling toward the set point in time) by
combining a fixed point attractor with a limit cycle or the presence
of spiral repellers (spiraling away from the set point) by combining
a fixed point repeller with a limit cycle. Combinations of the four
primary two-dimensional features, in essence, capture the common
trails through the topology and afford the possibility for twisting
flows of change. Theory dictates what topological features one
should expect to find in one’s data and the specific values at which
these features are found.

An Example of Two-Dimensional Translation

We can now go through the process of translating theory to
topology on what we might expect between male and female
negative affect in couples. The results in Figure 9 come from
equations where we only allowed a single topological feature and
are thus not surprising in that at its simplest, we would expect the
pattern of negative affect over time to move toward a state of
low–low negative affect (average negative affect was close to the
low end of the scale). Couples themselves are often described as
the ultimate form of social support for dealing with problems (see
Baucom & Eldridge, 2013, for a review). Couples utilize several
forms of accommodation to help one another, but also help them-
selves (Rusbult, Verette, Whitney, Slovik, & Lipkus, 1991). To-
gether these imply an attraction toward managing problems as they
arise—a verbal description of an attractor.

However, this is an overly simplistic view of couples in that
there is also ample literature on distress in couples. As an example,
distressed marriages can generate reciprocally negative interac-
tions that feed one another through time (Margolin, 1981). Such
descriptions imply a second attractor that can occur at high–high
negative affect. Furthermore, the interchanges of negative re-
sponses resulting in negative responses from the spouse suggest
spiral-like properties. A model that would account for both of these
circumstances would thus have two attractors instead of one where
the second attractor was a spiral attractor. Figure 9 is a simple
translation of this written description.

The theory laid out thus far implies an additional topological
feature too. Each of the elements depicted in Figure 9 is an
attractor that must have a saddle or repeller that defines the
boundary between each other. So we must imply some saddle or
repeller that separates out the two domains. Thus, our final repre-
sentation of the theory as an expected topology can be seen in
Figure 10, where we include all three primary topological features.

To translate this theory into a testable model, we need merely
draw lines that cross at all the set points. These lines are the
hypothetical null clines (more on this in the Equations of Change
section). All the topological features must be connected by the
lines (two lines, one for each dimension). The equation forms for
those lines specify the equation forms that need to be tested to
generate the hypothesized model. Figure 10 includes the null clines
crossing at each of the three set points. Our way to connect the
three set points implies a pair of cubic equations (one of the lines
could have been linear, but this would have forced a symmetry
between males and females, which was not the case, as shown
below).

To test out theory, we generated a multilevel model using an
actor–partner structure predicting the change of male and female
negative affect as the dependent variable and the two equations
implied by the hypothetical null clines as the predictors. This
particular model fit our data very well, generating a pseudo-R2 of
.41 (calculated by sum of the squared predicted values over the
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Figure 9. An incomplete translation of the running negative affect and
mood example into a hypothetical topology. The figure includes only
vectors around the hypothetical topological features. Since topologies are
assumed to be smooth, the features imply the areas between them as well.
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sum of the squared predicted plus squared residuals). However, the
results were not exactly as expected. Figure 11 is a state space
made from these results. Specifically, we observed the low–low
attractor and we observed a saddle, but the saddle was not where
it was expected. Furthermore, there was suggestion of a second
attractor, but it was not observed in the data (beyond the data
range).

Examining the divergence of our theory-driven topology from
the equation-estimated topology helps inform where our theory is
lacking—as a good tool should. Let us examine each of these
unexpected results independently. Our lack of the second attractor
may be due to the fact that the examined couples all scored highly
on relationship satisfaction and thus may be a limitation of our
ability to generalize the sample (see Butner et al., 2007). However,
this leads to a possible clue of where to go next in that the repeller
is barely within the data range, creating a stickiness or slowdown
of trajectories near the ridgeline (notice that the change is slower,
represented by lighter arrows, around the saddle at high female
negative affect). Kelso (1995) argued that stickiness in time series
can be indicative of an attractor that is only sometimes there. We
could be missing a control parameter that moderates the existence
of the second attractor—possibly relationship satisfaction. For
example, we might expect that when relationship satisfaction is
high, only the low–low state exists. When relationship satisfaction
is low, instead we might expect the second attractor to strengthen,
implying times where the couple is in the low–low basin and times
where the couple is in the other basin. It might even be possible for
only the non-low–low basin to be the only stable attractor for some
couples when the relationship is truly on the rocks. This distinction
is not unlike the types of supporters identified in the social support
literature—supportive, ambivalent, and aversive (Uchino, Smith,
Carlisle, Birmingham, & Light, 2013). Since our tested model did
not allow the topology to differ by other theoretical variables (or
even across couples), allowing for a changing map is one obvious
course of investigation.

The lack of symmetry between men and women is also intrigu-
ing. The results suggest instead that men in the sample were
always benefiting from the couple’s relationship—being pulled
toward low negative affect—while there was a cut point (the
saddle) for females where they no longer benefited from the
couple. This is consistent with the body of literature suggesting
that there is an asymmetry between men and women in terms of
who does more and who benefits from relationship maintenance
(Ragsdale, 1996).

From these results, there immediately become implications of
where we would need to go next—consider control parameters
that moderate the existence of the second attractor with a more
diverse sample to do so and also to consider how the asymmetry
between males and females in the relationship would potentially
impact the theory and resultant pattern. Most importantly, topo-
logical maps are relatively simple graphical representations of a
limited set of equations, allowing us to visualize and test our
theory even when it can be quite complex. The advantage that
topologies have over many current approaches is that they facili-
tate the translation from theory to statistical model and highlight
our lapses, suggesting new directions and integrations. We just
learned the steps to translate a theory into a topology, and now we
will focus on how to translate the topology into equation form.

Equations of Change

We have made an argument for why we need a tool like
topology, described how topology works, and described how to
translate a theory into a topological representation. The goal of this
section is to demonstrate how to translate a given topology into an
equation or set of equations of change. For clarity, we will express
the equations where the derivatives are the outcomes. This is a
direct analog to the implied equations from LDE (see Boker et al.,
2003) and LDS (though difference score modeling implies discrete
time; see McArdle, 2001). Given that change as an outcome can be
translated relatively easily into an autoregressive relationship
(Huckfeldt, Kohfeld, & Likens, 1982), we also believe this applies
to DFA approaches (see Wood & Brown, 1994) and the general
use of lag relationships (though we will not spend time on trans-
lating topology to a lag equation form).

LDE, LDS, and DFA models can be quite complicated to
build, but the equations they imply, when expressed in terms of
derivatives, are relatively simple. In fact, we will see that
topology from theory often implies models untested in our
modern methods. Since methods now exist that allow for direct
approximations of derivatives that can be used in regression,
multilevel modeling, and structural equation modeling (see
Deboeck, 2010), we will use basic regression notation using
unstandardized coefficients.

Topologies necessitate the use of nonlinear regression equa-
tions. There are multiple ways to do this (e.g., trigonometry,
nonlinear transforms), but we will stick with a polynomial and
interaction combination because it is flexible, familiar, and well
explored. For the purposes of the equations, we will ignore errors
of estimation and the need to include lower order terms when
examining higher order terms. This is done to focus our attention
on the model itself and should be translated accordingly (i.e., lower
order terms should be included with an eye toward the impact of
centering and scaling). Given that these are regression equations,
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Figure 10. A translation of the running negative affect and mood exam-
ple into a hypothetical topology with the inclusion of saddles that separate
each basin of attraction and a repeller where the saddles meet. Two null
clines (one for each dimension) represent areas where a single dimension
does not change. The points where the two null clines cross represent set
points where neither of the variables is likely to change.
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they should follow the standard rules for regression (see Cohen,
Cohen, West, & Aiken, 2003).

One-Dimensional Structures

A single equation where change is the outcome generates a
one-dimensional topology with or without control parameters. We
will start overly simplistic where the equation only has an intercept
to show what these models are reduced to if they fail to predict:

dx

dtit
� b0. (1)

In Equation 1, change is depicted as constant. When a regression
is run with no predictors, the intercept takes on the average value
of the dependent variable and, in this case, average change. This is
akin to linear growth models that depict constant change. For
example, this equation would capture the average change in neg-
ative affect over time.

To begin to capture topology, we need to add the variable used
to represent change into the equation:

dx

dtit
� b0 � b1xit. (2)

Once (x) has been added as a predictor of change in x, we have an
equation form that can represent a topology. Specifically, the
equation implies a set point where no change would occur. The
behavior around that set point defines the topological feature as an

attractor or repeller. To identify the set point, we set change to
equal 0 (the dependent variable) and solve for the value of x (the
value of x when change is 0). In this particular equation the set
point is at �b0/b1. To identify what kind of topological feature it
represents, we look at the sign on the slope of b1. Remember that
when the slope is negative, the equation implies an attractor. When
the slope is positive, it implies a repeller. Notice that this is the
direct analog to the scatterplot shown in Figure 5.

Consider an example from King et al. (2006) where change in
posttraumatic stress disorder (PTSD) scores was modeled as a
function of previous PTSD using latent difference scores. They
hypothesized a single set point (which comes across in their
equations rather than from drawing a topology) and found an
attractor: dx/dt � 15.31 � 0.803xit. In order to calculate the set
point, one must divide the inverse of the constant change
(i.e., �15.31) by the average slope (i.e., �0.803), which results in
a value of 19.07. At a value of 19.07, we would expect to see no
change in PTSD scores. Furthermore, the slope of b1 is negative,
suggesting that 19.07 is an attractor. According to the tested
equation, over time individuals should move toward a value of
19.07 on the PTSD scale.

When b1 is positive, we instead observe the pattern of a fixed
point repeller where cases are pushed away from the set point,
also defined at �b0/b1. In reality, observing a repulsive set
point should be rare. We would only ever observe flows away
from the repeller because systems are thought to be constantly
perturbed (small changes can occur from parts of the system not

Figure 11. Topology generated from the estimated equations extracted from our hypothetical state space. There
are two main divergences from our theory. The second attractor indicative of problematic cycling in the couple
was beyond the data range, and the saddle was asymmetrical, showing cut-point-like behavior for females (high
negative affect going higher) but not males.
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being modeled, such as lower and higher order parts of the
system) and a slight change off the set point pushes the case
away from the fixed point repeller (Stewart, 2002). It is also
possible that if the timing of measurement missed the flow of a
variable away to some other topological location, then there
would never be a representation of the repeller in the data. As
noted in our theory to topology translation, repellers are often
implied even when they are not observed as the borders between
attractors.

The rate of change just off the set point captures the strength of
attractiveness or repulsiveness. In this case, the slope is constant at
all levels of x, capturing the strength of attractiveness or repul-
siveness. If we ignore the sign (indicating whether it is an attractor
or repeller), the slope dictates how quickly one would move
toward or away from the set point. So, a steeper slope is indicative
of a stronger topological feature (e.g., a rolling hill vs. mountain
cliff). This numerical value is known as a local Lyapunov expo-
nent (Kantz & Schreiber, 1997) or characteristic root (Abraham &
Shaw, 1992).

The Lyapunov exponent is a numerical value that captures the
rate of entropy for a given topological representation of the data
(i.e., the steepness of the slopes that make up a valley or a hill).
The Lyapunov exponent in King et al.’s (2006) examination of
PTSD over time is the average proportional change, or �0.803
units on the PTSD scale. The larger the value, the more quickly the
PTSD scores will settle on the set point over time.

Let us consider the impact of other variables in Equation 2.
Adding other variables as predictors captures the potential impact
of control parameters because they alter the topological features. In
our one-dimensional negative affect example, adding partner’s
negative affect as a predictor had the potential to alter the topo-
logical feature, but whether we add the predictor as a main effect
or interaction has dramatically different effects. If a predictor is
added as a main effect, it can only influence the set point location.
Predictors that are allowed to interact with each other can alter
both the location of the set point and the strength of the set point
(as actually occurred in Figure 7). In Equation 3, we add another
variable (a) as a main effect on change:

dx

dtit
� b0 � b1xit � b2ait. (3)

Following the same rules as before, we can solve for set points by
setting change to 0 (the dependent variable) and solving for x. Now
we observe that the set point is a function of the control parameter a:

x �
b0 � b2ait

�b1
. (4)

To identify the Lyapunov exponent, we need to identify the
change that occurs just off the set point (at the limit of the set
point). To do this we take the derivative of Equation 3 with respect
to x. This can be confusing because the dependent variable is a
form of derivative. The easiest way to understand this is to imagine
the dependent variable as another variable entirely (e.g., U), just
like a standard regression analysis. In Figure 12, we show a
slightly curved equation relationship between the dependent vari-
able and x. Taking the derivative with respect to x (as opposed to
“with respect to time”) identifies the slope of the tangent line near
the intersection between the function and where change is

0—which is the local Lyapunov exponent. The derivative of
Equation 1 equals a value of 0; there is no topological feature. The
derivative of Equation 2 equals the slope, b1. The derivative of
Equation 3 is also equal to the slope, b1. Adding in main effects to
this equation moves the set point but does not alter the type of
topological feature or its strength.3

For a variable to alter the type and strength of a topological
feature in a one-dimensional state space with only a single set
point, there must be an interaction with x. Equation 5 adds the
same control parameter but this time as an interaction with x:

dx

dtit
� b0 � b1xit � b2xitait. (5)

In Equation 5, (a) is capable of influencing the value of the set
point, the type of topological feature, and its strength. Solving for
the set point (setting change, the dependent variable, to 0 and
solving for x), we get xit � �b0/(b1 � b2ait), a value that is
different as a function of a. Solving for the Lyapunov exponent by
taking the derivative of Equation 5 with respect to x, we get b1 �
b2ait. Notice that the value of the Lyapunov exponent differs as a
function of a.

Also notice that adding a as a moderator can make the Lya-
punov negative or positive, allowing for an attractor at some values
of a and a repeller at others. The limitations of what a does are a
function of the scaling of a and x, respectively. The key point here
is for a variable to alter a topological feature beyond just moving
the set point—it should be treated as a moderator. This gets more
complicated when x takes on polynomial forms, but the idea is the
same.

The equation form thus far is capable of representing a topo-
logical feature and allowing for another variable to alter this
topological feature. Topologies, and their underlying equation
forms, provide researchers with more precision and flexibility

3 Given that most phenomena are measured on a limited discrete metric,
it is possible for a control parameter to essentially move a set point outside
the data range or even scale range. This is essentially a form of emulating
a flow or extinguishing/changing a topological feature due to measurement
limitations rather than capturing it in equation form.

dx
/d

t 

X 

0 

Figure 12. A one-dimensional state space including the dimension of
change on the y-axis. The Lyapunov exponents for a topological feature are
the tangent lines at each set point. The equation for the Lyapunov exponent
expresses the topological forces at any value of x.
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when translating between theory and model testing, in part because
topological features can be altered, but also because there can be
multiple topological features. In the example of negative affect, it
is possible to have more than one stable level of negative affect, as
observed in the particular participant in our data set in Figure 6. To
generate the equation for multiple topological features, we need to
explore nonlinear relationships between change in x and x as a
predictor. Let’s start with a simple case of x2:

dx

dtit
� b0 � b1xit � b2xit

2. (6)

Figure 13 shows a best fitting line of hypothetical data repre-
senting x squared. Notice that the line crosses the point where
change in x is 0 at two values of x, giving us two set points.
Furthermore, we can now imagine the Lyapunov exponents as
tangent lines at each of the set points (drawn as light gray lines on
Figure 13). One of the slopes is negative, indicating an attractor,
while the other is positive, indicating a repeller.

Taking the derivative of Equation 6 with respect to x and
treating the dependent variable like it is a different variable (e.g.,
U), we can identify the value of the Lyapunov exponents. Unlike
the linear equation form, the resultant equation (b1 � 2b2xit) is a
function of x itself. That is, we generated a characteristic equation
of how forces differ at varying parts of the map. Since Lyapunov
exponents are best understood at the topological features (e.g., set
points), we can stick in the value of the set points for the value of
x to identify each Lyapunov or the strength of each set point.

As a comparison, let us generate the same graph for a cubic
relationship:

dx

dtit
� b0 � b1xit � b2xit

2 � b3xit
3. (7)

The accompanying phase space is shown in Figure 14. Now there
are three values of x where the change in x is 0—three set points.

There is a direct relationship between the degree in the polynomial
form and the number of possible set points. It is also clear that the
set points switch off between being attractive and repulsive. This
is due to the fact that in order to separate two or more attractors,
a repeller or saddle must define the boundaries of each attractor.

As our last example in one-dimensional topology, let us com-
bine the idea of moderators and polynomial relationships exploring
the cusp catastrophe, a relatively well-known equation in mathe-
matics (Guastello, 2011). The cusp catastrophe model has been
applied several times in psychology, from areas ranging in binge
drinking with attitudes toward alcohol to speed–accuracy trade-
offs and a general model of attitudes (Dutilh, Wagenmakers,
Visser, & van der Maas, 2011; Smerz & Guastello, 2008; Latané
& Nowak, 1994), but was originally applied by Lorenz (1966) to
understand emotional expression in dogs. The cusp catastrophe
includes a cubic function of x and two control parameters (one as
an interaction):

dx

dtit
� b1xit

3 � b2xitcit � b3ait. (8)

The cubic relationship will allow for three set points, and in the
common catastrophe model two of the set points function as
attractors while the third functions as a repeller between the two
(as before, we can now solve for the set points and local Lyapunov
exponents for each). The existence of these two stable states is a
function of the control parameters c and a. The control parameter
a functions as an asymmetry term, altering the strength of attrac-
tion for each of the two attractors, while c can strengthen or
extinguish the stable states via the bifurcation, turning the three set
points into a single set point (see Figure 15 as an example).

Going From Hypothetical Topology to Testable
Equations in One Dimension

In the one-dimensional topology case, generating the topology
from theory and into equation form is relatively easy. All the

0 

dy
/d

t it 

Yit 

Set Point A�ractor

Repeller 

dy/dtit= b1y2
it-b2cit 

Figure 13. Graph in scatterplot form (where change is on the y-axis and
y is on the x-axis) of the one-dimensional state space for a quadratic
relationship between y and change in y. The light gray lines show the
Lyapunov exponents around each set point.

0 

dy
/d

t it 

Yit 

Strong Repeller 
Strong Repeller 

Weak A�ractor 

Figure 14. Change is on the y-axis and y is on the x-axis. The graph
depicts a one-dimensional state space for a cubic relationship between y
and change in y. The light gray lines show the Lyapunov exponents around
each set point, showing the repellers (positive slopes) and an attractor
(negative slope).
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equation representations can be thought of in terms of the scatter-
plots with change on the y-axis and the same variable on the x-axis.
Generating set points merely requires identifying the places on the
x-axis one would expect 0 change. Attractors need repellers be-
tween them to identify the regions of attraction or borders between
the attractors. Finally, one need merely draw a hypothetical line
connecting the set points where the slopes are negative at the set
points for the attractors and positive for the repellers.

The equation for the line that connects the set points while maintaining
the proper signs on the slopes at each set point is the equation to be tested.
For example, the individual in Figure 5 implies a linear equation: change
in negative affectt � b0 � b1(negative affectt). Our individual in Figure
6 implies a cubic equation: change in negative affectt � b0 � b1(negative
affectt3) � b2(negative affectt2) � b3(negative affectt). To argue that these
two individuals reside in the same topology would require either the cubic
form (assuming that the first person never left the first attractor but could
with the right perturbation) or an equation form that includes a control
parameter to dictate when we would observe one model versus another.
This control parameter model could be a case of a linear form (like the
first person) with a main effect as a function of the control parameter that
can move the set point (in this case, the control parameter is changing
within the second person’s data so that the location of the attractor itself
is sometimes high and sometimes low) and an interaction (because the
strengths of attraction are not equal for that individual). This is exactly
what we tested to produce the Figure 7. Or it could be something closer
to the cusp catastrophe model where control parameters sometimes allow
for unistable patterns and other times allow for the multistable one.

Each model is different from the other, requiring careful thought on
theory enhancing the theory generation process. Each circumstance
implies different testable results—the catastrophe model suggests
that, all else being equal, there can be two stable states (though the
existence of the stable states are moderated), while the linear interac-
tion model suggests that there must be something that moderates the

high stable pattern versus the low stable one—multistability is not
possible. In the end, the process itself provides utility for enhancing
theory.

Two Dimensions in Equation Form

To move to a two-dimensional topology where we look at the
outcome on two variables, we need to consider two equations of
change simultaneously. Each equation treats change as the out-
come—the hidden dimensions of the topology. As before, we can
identify set points and Lyapunovs. However, set points and Lya-
punovs are now the function of both equations. For example, let us
begin with two linear equations of change using x and y:

dy

dtit
� b0 � b1yit � b2xit,

dx

dtit
� b3 � b4xit � b5yit.

(9)

This model is known as the bivariate model in latent difference
scores (McArdle, 2001). It includes a pair of crossover influences
captured by b2 and b5, respectively.

Using an advanced mathematical graphing tool is the easiest way to
reconstruct a topology from an equation for a two-dimensional state
space. Many of our graphs utilized Grapher (a program that comes
preinstalled on all Apple computers running OS X). However, we will
also need to understand a known hand method because it is key to
converting two-dimensional topologies from theory to equations. The
key to decomposing two outcomes in time (e.g., finding the set points
and Lyapunov exponents) at the level of detail discussed herein is to
draw upon null cline approaches (Gottman et al., 2002).

Null clines depict the coupled equations in xy space when the
changes (i.e., dependent variables) are fixed to 0. In essence, they

Figure 15. Example one-dimensional state space from the cusp catastrophe model with two values for the
control parameter a using Equation 8. The solid line has three set points (one repeller and two attractors). The
dotted line has only one set point, an attractor. This ability sometimes to have one stable state versus two is due
to the inclusion of higher order interactions in terms of c and the polynomial of x (a can also turn the model into
having a single set point by making the cubic function extremely asymmetrical).
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are the expansion of set points to two dimensions, making a pair of
lines instead of points. To identify the null clines, begin by
considering the circumstance where each equation would show no
change—a velocity of 0. For this we consider each equation in
isolation in a xy space. In both cases we solve for y to place it back
into regression equation format. The first equation in Equation 9
would generate a relationship of yit � �(b0 � b2xit)/b1, and the
second a relationship of yit � �(b3 � b4xit)/b5. Each of these null
cline equations, when graphed, represents lines where no change
occurs on that dimension. The set points of the system are where
these two lines intersect, and each area sliced by the two equations
can potentially have different patterns of change.

Figure 16 shows the null clines overlaid on the male–female
negative affect state space in Figure 8. As mentioned earlier, this state
space was generated by simultaneously treating the change in nega-
tive affect for males and the change in negative affect for females as
the dependent variable using an actor–partner-style model. In this case
our tested equations were the same as Equation 9. The two null clines
only cross once at the set point for the attractor.

To go from theoretical topology to testable equations, this is as
far as one needs to understand about null clines (the lines represent
no change in one variable and generate set points where they
cross). However, they can be used to identify the set points and the
Lyapunov exponents. We illustrate the complete process using
Littlefield, Vergés, Wood, and Sher (2012). It generates a single
attractor similar to our midstep negative affect example (where we
only allowed for a linear equation).

Littlefield et al. (2012) modeled the relationship between nov-
elty seeking and alcohol consumption of college students using
three waves of data over their 4 years in school; they presented
some evidence that novelty seeking predicted changes in alcohol
use. For our purposes, we will restrict our discussion to their first
model (their Figure 1a), though they tested some interesting alter-
natives. For illustrative purposes, we will discuss the model in
terms of change over the eight semesters. While these authors
utilized a form of LDS model that has similarities to Equation 9,
we will interpret their results using Equation 9. This model (along
with the others tested) only provided variance/covariance param-
eters lacking information necessary to estimate any intercepts. We
therefore treat the intercepts extracted from their equations as 0.
Having different intercepts would move the location of the set
point, but not alter the map in any other way.

The null clines (as illustrated in Figure 17) were identified by
solving the equations, ignoring the other equation entirely. First,
we infer that Littlefield et al. (2012) considered the linear change
in heavy drinking to be 0 units (i.e., b0; our best guess from the
exclusion of mean structure in the model) and for this to change
proportionally by �0.50 (i.e., b1) for each unit of heavy drinking
and by 0.01 (i.e., b2) for each unit of novelty seeking. For changes
in novelty seeking, the authors fixed the linear change to be 0 units
(i.e., b3; again, our best guess), the proportional change predicted
by novelty seeking to be �0.37 units (i.e., b4), and the proportional
change predicted by heavy drinking to be 0.04 units (i.e., b5).
Therefore, we computed the null clines, placing heavy drinking on

Figure 16. The two-dimensional state space of male and female negative affect from a pair of coupled linear
equations with the inclusion of null clines. These equations were the same as Equation 9.
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the y-axis and novelty seeking on the x-axis, as having null clines
of heavy drinking � �.02(novelty seeking) and heavy drink-
ing � �9.25(novelty seeking). This implies a single two-
dimensional set point at 0 novelty seeking and 0 drinks (the point
the two lines cross), though the location of this set point is
completely determined by our inference of intercept values. One
way to think of this 0/0 location is as the mean value (logically true
with a single topological feature, though not always true).

This slices up the topology into four areas, where an individual
has more than 0 drinks and more than a 0 in novelty, where an
individual has more than 0 drinks and less than a 0 in novelty,
where an individual has less than 0 drinks and more than a 0 in
novelty, and finally where a person has less than 0 drinks and less
than a 0 in novelty. The general behavior of each quadrant is
identified by taking an exemplar value of heavy drinking and
novelty seeking within each area and using the original equations
to determine the velocities (where it goes). It is not even necessary
for these points to be close to the set point (though going too
extreme can overly simplify the description of the quadrant’s
behavior). For example, if you insert eight drinks and a score of 2
on novelty seeking into the original equations, the derivatives give
a sense of the behavior for the entire “more than 0 drinks and
greater than 0 novelty” quadrant. In this case we would get heavy
drinking � �0.5(8 drinks) � 0.01(2 novelty seeking) and novelty
seeking � �0.37(2 novelty seeking) � 0.04(8 drinks). The pre-
dicted derivatives would be �3.98 and �0.42, respectively; mean-
ing that if a person were to report consuming eight drinks and
score a 2 on novelty seeking, we would predict the individual to
decrease his or her number of drinks consumed by 3.98 and

decrease his or her novelty seeking score by 0.42 over time. This
quadrant moves toward the set point in terms of novelty seeking
and heavy drinking (attractive in both dimensions).

Repeating this process for all quadrants derives the overall
topological behavior. If you start with high levels of heavy drink-
ing and high levels of novelty seeking, you would see a sharp
decrease in your heavy drinking but a slight decrease in novelty
seeking over time. If you start with low levels of novelty seeking
and high levels of heavy drinking you will decrease your heavy
drinking to around 0 drinks (i.e., the set point) and slightly increase
your novelty seeking over time. Alternatively, if you start with low
levels of both heavy drinking and novelty seeking, you are likely
to slightly increase your heavy drinking to 0 drinks and increase
your novelty seeking behavior. Lastly, if you start with low levels
of heavy drinking and high levels of novelty seeking, you will
drastically decrease your novelty seeking and slightly increase
your heavy drinking over time. In essence, this is describing a
two-dimensional attractor as illustrated in Figure 18.

In a two-dimensional system, each topological feature has two
Lyapunov exponents, one in terms of x and one in terms of y. To
identify the characteristic equations, we merely need to examine
each equation on its own (as with the null clines) and take the
derivative of the equation with respect to the variable whose
change we are predicting. This is the same process as was done in
the one-dimensional models, except now done for both equations.
For example, for the equation where change in heavy drinking is
the criterion, we take the derivative with respect to heavy drinking
(treating change in heavy drinking as a different variable; e.g., U).
This results in a value of �.5. For the equation where change in

Figure 17. Null clines generated from the Littlefield et al. (2012) data. Their results imply a single set point
where the two lines cross. This splits the topology into four territories each of which can have different behavior.
The set point is at 0,0 because of our inference for the intercepts that the model did not specify.
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novelty seeking is the criterion, we take the derivative with respect
to novelty seeking (treating change in novelty seeking as a differ-
ent variable: e.g., U). This results in a value of �.37. The set point
values for x and y are then inserted into the equations, identifying
the local Lyapunov exponents (since the resultant equations are
constants in the Littlefield example, this step is unnecessary—the
Lyapunovs are the same over the entire spectrum of values if these
equations are correct). This method is imperfect in that it will
identify the overall attractiveness and repulsiveness of each di-
mension (x and y, respectively) but will fail to depict any oscilla-
tory (angular) effects. These require the crossover or coupling
relationships, and the math is complicated in that an oscillatory
effect has an imaginary Lyapunov exponent that will come out as
0 under estimation procedures that only consider real numbers (a
value of i, mathematically speaking). To account for possible
oscillatory relationships, one would need to take the eigenvalues of
the set of coefficients (estimated at the set point) instead (this
matrix is known as the Jacobian matrix). Figure 19 shows how
combinations of Lyapunov exponents differentiate the two-
dimensional typologies (we add in the last row what happens when
using two second-order equations, as discussed below). Combin-
ing the Lyapunovs with identifying the patterns of each quadrant
gives the general sense of patterning.

Going From Hypothetical Topology to Testable
Equations in Two Dimensions

The lines drawn in Figure 10 with our negative affect example
are much more complex null clines (polynomial or other nonlinear
forms). By reversing the null cline process, we can identify the
implied equations. For example, Figure 10 implies a very complex
equation form (x to the 3rd power for each null cline equation).
Once each equation form is identified, placing all the terms on one
side of the equation with 0 on the other (the exact reversal of the
null cline procedure) identifies the hypothetical equations. Control
parameters can then be added as appropriately or in the identifi-
cation of the null clines themselves.

The multilevel model we tested for this topology (which re-
sulted in the topology shown in Figure 11) was Equation 10 (see
below). This is a simple translation of each of the cubic functions
with the addition of linear crossover effects. These crossover
relationships (the b4s) allow for the swirling relationship we hy-
pothesized for the second attractor.

We just went from equation to topology. Our argument is that
there is utility going from the other direction. The process is
merely reversed. Figure 10 included the null clines overlaid on our
theory-based topology. To draw these, we knew that the lines had

�FemaleNAit � bf0 � bf1FNAit � bf2FNAit
2 � bf3FNAit

3 � bf4MFAit � efit,

�MaleNAit � bm0 � bm1MNAit � bm2MNAit
2 � bm3MNAit

3 � bm4FFAit � emit.
(10)

Figure 18. Two-dimensional state space of Littlefield et al. (2012) implied by our inferred equations from
Littlefield et al.’s results for Model 1.
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to cross at each of the set points—each of the attractors and the
saddle between them. This forced two curved lines with cubic
forms. Next, swirled patterns as proposed in the high–high attrac-
tor only occur when the values of one person’s affect were allowed
to predict their partner’s affect. Together this implied two cubic
equations, with the ability of each partner’s negative affect also to
predict that of his or her partner. This was the equation form we
tested that produced the topology in Figure 11. As with the heavy
drinking example, we can identify where the set points are along
with the Lyapunovs in each direction, and the resultant figure
(which is restricted to the data range) implies an update to our
theory.

Beyond Two Dimensions

While it is possible to go beyond two dimensions in creating
topology, going beyond three is difficult to represent graphi-
cally. Beyond two dimensions new topological features become
plausible (e.g., chaotic attractors become viable at three dimen-
sions). However, many common quantitative practices are anal-
ogous to reducing the number of dimensions needed. For ex-
ample, event sampling (Reis & Gable, 2000) is a sampling
method where measurements are taken when a certain event
occurs. This is akin to a physicist’s stroboscope where other
variables are examined when one variable is at its peak (or some
other signal point). The result is to separate out the outcome

Type
First 

Lyapunov 
(+/-)

Second 
Lyapunov 

(+/-)
Equation Components Illustration

Attractor - - two negative first 
order equations

Repellor + + two positive first 
order equations

Saddle - +
one negative and 
one positive first 
order equations

Spiral 
Attractor - i

one negative first 
order equation and 
one second order  

equation 

Spiral 
Repellor + i

one positive first 
order equation and 
one second order 

equation 

Limit 
Cycle i 0 one second order  

equation

Torus i i  two second order  
equations

Figure 19. Combinations of Lyapunov exponents and two-dimensional typologies.
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relating to the event from the topology—the topology depicts
behavior under the event.

The process of making scale scores and differences between
outcomes can also reduce the number of topological dimensions
(Chow et al., 2005). For example, Kelso (1995) measured the
position of the right and left index fingers of participants (actually
the position of batons held in left and right hands) as they at-
tempted to move their fingers back and forth in-phase or antiphase
(e.g., like two pendulums). Instead of attempting to graph both
trajectories over time, Kelso graphed the difference in the phase
between the two fingers at each point in time. Each finger has its
own complex dynamics, but focusing on the phasic difference of
the finger positions (as a difference in their position on a cycle)
simplified the topology.

We can also simplify the number of dimensions necessary by
allowing the hidden dimensions of topology to represent higher
orders of derivatives, differences, and autoregressive relationships.
For example, LDE commonly expresses change equations where
acceleration (the second derivative) is the outcome. These second-
order models essentially convert flow and pattern behavior (e.g.,
limit cycles) to have the properties of fixed points in topology. The
result is that a bivariate model (two simultaneous equations) treat-
ing second derivatives as outcomes can actually imply a four-
dimensional topology akin to the torus in Figure 19.

Recall in the one-dimensional topology representation where
there was only a single equation predicting change. Behaviorally,
we can really only observe fixed point behavior—attractors and
repellers. Generating the same equation where acceleration in x is
the outcome and x is the predictor is the direct second-order
analog. If we were to identify the Lyapunov exponent, it would be
the coefficient on x. In second-order models, the coefficient on x
has the interpretation of frequency in squared radians where the
sign is negative. Within topology, the sign is negative because a
limit cycle is attractive—a stable pattern of behavior. The fre-
quency representation has the interpretation of being a Lyapunov
exponent, indicating how fast you move around the path. In
essence, we get the description of a two-dimensional topological
representation but in a single equation form.

In terms of topology, we have converted one dimension of the
system to a hidden dimension. We can observe the topological
pattern by graphing the first derivative (velocity) on the y-axis and
x (position) on the x-axis (see Figure 20). Notice that acceleration
is still hidden.

It is also common to include the first derivative (velocity) as a
predictor. Doing so generates a form of the second Lyapunov
exponent we would have seen in a first-order model. That is, the
coefficient on velocity represents damping—how the oscillations
lose or gain amplitude (distance from the set point). Combining
this coefficient and the coefficient on x (position) provides the two
Lyapunov exponents of the two-dimensional system.

Importantly, they are transforms of the Lyapunovs described
earlier. Generating two actual equations where change is the out-
come follows the rules of vector math. Using acceleration as the
outcome follows the rules of complex numbers. Both can be used
for depicting the same patterns, but in drastically different
ways—in the vector approach we essentially need two variables to
represent changes rather than one. In essence, this is what is
occurring when additional lags are added in autoregressive style

models (e.g., DFA where two lags are included as opposed to just
one).

An important concern about second-order models is that
currently there is no way to extrapolate the set points of the
system. The math provided for identifying the set points will
instead tend to result in a value of 0. This is partly a function
of current methods, since the general approach in LDE is to
drop the intercept from the equations (the intercept theoretically
does not exist because it would be the value of acceleration
when velocity and position are both 0, which does not happen
if the data is centered around the homeostatic point and cy-
cling—when position is 0, velocity is its maximum). One pos-
sible concern from this is that current methods may lack a
means of identifying if the observed behavior is a function of
different topological regions or collapsing across them. One
solution may be to conduct a single first-order equation first,
save out residuals, and then conduct second-order modeling on
the residuals with a control parameter indicating which basin
of attraction a given time point is within. This method is
untested and relies on a two-step procedure that may not be as
accurate as an approach that would be able to estimate both
first-order and second-order behavior simultaneously.

Discussion

This article argued for converting our theories into topology, which
can then be converted into testable equation form. To do so, we have
described multiple features of topologies and provided a number of
examples for how to transition theories or hypothesized effects into a
topological representation. In addition, we outlined several tools for
translating topologies into equation form, including identifying set
points, the strength of the set points in terms of Lyapunov exponents,
and null clines in two dimensions and outlining the role of main
effects and moderators in these equations.

An ongoing question raised by using the methodology argued for in
this article is, how does one choose the topology that more accurately
models their phenomenon? As a theorist-seeking description of a
phenomenon, the model generation approach begins by theorizing
what the patterns look like in time. We suggest a process not unlike

dx
/d

t 

0 

X 

Figure 20. Plot of velocity in x on the y-axis and x on the x-axis. The data
circles the set point, but the slope between velocity and x fails to depict the
limit cycle.
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what was done in our hypothetical negative affect example. Envision
the patterns of each variable through time. Identify attractors, control
parameters, order parameters, and where topological features are
located based on your theory. Once one has some sense of the
topologies, one has to ask if they are on the same map or if the map
is changing as a function of control parameters (and if control param-
eters are changing the map, what parts of the map are they changing)?
One can then add in the topological features we tend not to see, but are
implied, such as the repellers and saddles that form the edges of each
basin of attraction.

Once we have a hypothetical state space of the theory, this can
be converted into equation form. There are several general prin-
ciples:

• The number of dimensions of the state space stipulates the
number of simultaneous change equations.

• Swirls and cycles in topology require coupling relationships
between equations (where x predicts changes in y and y
predicts changes in x) or must be simplified via a method-
ological or quantitative technique (i.e., event sampling, phase
variables, scale score or equivalent latent variables, or using
higher orders of derivatives as outcomes).

• Control parameters added as main effects merely move the set
points in linear models.

• Control parameters added as moderators in linear models can
alter the topological feature (e.g., from attractor to repeller or
merely a weaker attractor).

• Higher orders of polynomials directly correspond to more
topological features (a quadratic implies two features, while a
cubic implies three).

• One-dimensional topological features alternate. So a map of
two attractors without a control parameter must imply a re-
peller between them.

Once we determine the equation form that represents the topology,
this equation form can be tested on data directly. The resultant
equations can then be used to generate the state space it implied—a
direct reflection of the original theory.

Estimating Derivatives

The approach outlined in this article often requires derivatives
as the outcomes with longitudinal data. There are multiple methods
that can be used to estimate derivatives. First, structural equation
modeling (SEM) programs can be creatively used to capture de-
rivative functions (e.g., Chow et al. (2005) constructed latent
variable derivatives from multiple indicators of affect simultane-
ously). Measurement-wise, SEM is preferable because it can cap-
ture measurement structure that cannot be represented in virtually
any other domain. However, many of the nonlinear forms outlined
have yet to be explored in SEM. In SEM there are recent methods
for capturing two-way interactions and polynomials (Marsh, Wen,
& Hau, 2006). The extent to which these methods can be expanded
to higher order forms akin to those promoted here remains an
unknown.

Another method involves using approximation methods for gen-
erating derivatives and using regression and multilevel modeling
approaches for model testing. The local linear approximation tech-
nique (also the generalized local linear approximation technique)
promoted in the past (see Boker, 2001) works well for first-order

models but becomes less desirable with the inclusion of second-
order forms. Instead, we currently prefer the generalized orthog-
onal local derivatives approach for generating derivatives, given
that it makes orthogonal estimates (see Deboeck, 2010). As illus-
trated here, simple differences can also work, though there is a
history of debate as to the benefits and disadvantages of their
statistical properties.

Finally, traditional approximation approaches have suggested de-
trending your data first. Detrending is a data processing technique that
separates long-term changes (i.e., trends) from short-term changes in
data. For example, within the oscillatory models, such as those de-
picted by second-order equations, it is common to model the residuals
from a moving average model or linear growth model. We believe this
may be less necessary to the extent that one has properly specified the
first-order and second-order forms correctly. Detrending will tend to
normalize all the patterns in your data, removing what may be
important stable state differences, and ultimately muddying the waters
as opposed to clearing them up. Instead, we believe proper centering
and scaling, as it has been expanded in regression and multilevel
modeling, may be better tools.

Limitations

Our example from Littlefield et al. (2012) highlights some impor-
tant considerations for working with topology in conjunction with
statistical modeling. Statistical models inherently incorporate error
terms to capture error in model, estimation, sampling, and measure-
ment. Yet, our translation of equations into maps ignored this error.
For example, two of Littlefield’s coefficients (the crossover or cou-
pling relationships) were nonsignificant, and yet we utilized the sam-
ple estimated values instead of a value of 0. Dynamical systems
theory does maintain notions of error, but distinguishes them slightly
differently by incorporating the idea of perturbations (Stewart, 2002).
Perturbations are constant nudges through time due to parts of the
system that remain unexamined. They are inherent in the maps in that
a fixed-point attractor and a fixed-point repeller at the set point can
only be distinguished under perturbations—you stay at the attractor
and leave the repeller once perturbed. In essence the map guides
behavior, but does not stop someone from climbing a mountain—it
simply captures how much effort it would take to make that trek.
Since these models incorporate stability through Lyapunov expo-
nents, the notions of perturbations are incorporated, while other no-
tions of error are not. The impact of capturing some, but not all, of
error therefore remains an unknown.

Furthermore, we treated Littlefield’s model (and our affect exam-
ples) as unbiased estimates of coefficients. The authors are unaware of
any research investigating the limitations of various models in their
ability to properly capture all the various topological circumstances,
especially when Lyapunov exponents are i (square root of �1; see
Figure 19). The extent to which one must seek alternative procedures,
such as moving to second-order models of change, will require further
investigation. However, it is important to remember that maps are
believed to exist on manifolds—stretchable fields (Stewart, 2002).
For example, in terms of manifolds a circle and square are the same.
As an analogy, there are over a dozen ways to create a map of the
globe (including a three-dimensional globe). Each appears slightly
different, but all are showing the same information. The same may be
true for maps estimated through various statistical models. That is,
some bias in one estimation procedure or another may be more a
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function of how we display the map rather than depict different
behavior. Such notions require further investigation to understand
how bias in estimation impacts the description of behaviors we
observe in the maps generated from equations.

Our treatment of Littlefield et al. (2012) also regarded the relation-
ship of change to be constant over time. In fact, Littlefield’s other
models freed up this temporal invariance. Underlying dynamical
systems models is the assumption that an equation or set of equations
can be used to characterize the changes in the system through time.
These equations are more tractable when they are assumed to change
under predictable ways that can be incorporated into the equations
(e.g., control parameters) rather than having different equations at
different instances. We therefore stuck to their first model, which met
this logic.

Furthermore, we treated the time points from Littlefield et al.
(2012) as equidistant, when in fact they were not. The timing of
measurement is of paramount importance for systems models, such as
the maps shown here. The impact is best illustrated through the
stroboscope logic of event sampling mentioned earlier. Timing can
turn chaos into cycles and cycles into fixed points. It is reasonable to
assume that timing can also have adverse effects. For example, in time
delay reconstruction (a descriptive method for extracting phase
space), timing of measurement relative to the timing in which the data
pattern unfolds can greatly distort the resultant maps (Kantz &
Schreiber, 1997). However, it is not as simple as merely requiring
timing that is evenly spaced. In fact, there are multiple timings that
might apply to psychological phenomena (McGrath & Kelly, 1986).
These philosophical differences may differentiate when calculus ap-
plies (the use of derivatives) versus discrete time (the use of differ-
ences). Such choices could potentially simplify the description of
complex patterns through time or make them more complex.

Conclusion

The larger aim of this article has been to show how visual tools
from topology can capture a theory while also having direct mathe-
matical translation. This allows for the integration of complex mod-
eling techniques currently available to the theories they represent.
Topology provides a way to understand these seemingly intractable
modeling techniques. As a tool for the behavioral sciences, topology
can ultimately provide researchers with a way to work with complex
ideas without limitations and then use the topology to generate plau-
sible complex equation forms that represent the cutting edge of how
we statistically test our theories. Ideally, theory leads to model testing
and model testing leads to theory adjustment. As a midstep between
complex theory and models, topology may make this process much
more efficient.

When Aiken and West (1991) illustrated the process of simple
slopes testing, they empowered researchers with ways to go from
regression interactions to graphical representations and then ways to
test and explore specific locales within the scatterplot. Topology
essentially provides an analog. It is a graphical representation of a
series of complex relationships—substantially more complex than a
regression interaction. It highlights the importance of the set points
and their characteristic roots. And it provides a way to directly
translate complex theory to diagram to testable equation and back
again.
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Appendix

Glossary of Terms

Antiphase: Opposite phase. An example would be the two sides of
a rope in a pulley. As one side moves up, the other side moves down.

Attractiveness: The degree to which a system or variable
changes toward an attractor in time; see Lyapunov exponent.

Attractor: A state that a system or variable changes toward in
time.

Change score: Numerical value of the difference between
states; difference score. This is the simplest representation of a
discrete derivative.

Characteristic root: Strength of a topological feature; see Lya-
punov exponent.

Control parameter: Variables that have the capacity to alter the
topology of a state space. An example would be the temperature of a
burner on a stove. At a low temperature, you might let your hand go
near the burner, but at a high temperature, you would be less likely to
hold your hand near the burner. Control parameters are often thought
of as the independent variables of a dynamical system.

Cusp catastrophe: A mathematical model in which a system
can sometimes show smooth changing behavior and other times
show category-like stable states. These states tend to be resistant to
change, while the smooth behavior tends to function more fluidly.
An example would be how attitudes change frequently when they
are of low relevance to an individual, but when highly relevant
they can lock in at high or low values and are resistant to change.

Damping: Decrease in oscillations of a system. Friction is
damping for a moving object.

Detrending: Data processing technique that separates long-term
changes from short-term changes. This usually involves calculating a
moving average or general pattern of change like a growth model and
only retaining the residuals from this model as the data of analysis.

Dynamical systems: The study of dynamics. Multicomponent
systems that interact to form emergent complex patterns of change
over time. An example is weather. Many factors such as temper-
ature, humidity, and air pressure may interact to form a storm.

Dynamics: Change over time.
Event sampling: A sampling method where measurements are

taken when a certain event occurs. An example would be filling

out a brief series of questions whenever a person has a social
interaction longer than 1 min.

First-order model: An equation that includes first-order deriv-
atives (e.g., velocity or a difference), but not higher derivatives.
Much of this article uses velocity as the outcome generating
first-order models.

Fixed point attractors: The state that a system changes to be
closer to a set value. If a system state is at a fixed point attractor, it will
be stable. An example is a pen lying on the ground. A small bump in
any direction will most likely result in a pen lying on the ground.

Fixed point repellers: The state that a system changes to be farther
away from a set value. A system is unstable at the location of a fixed
point repeller. It is extremely rare to directly observe a fixed point
repeller. An example would be a pen balanced on its tip—a small
change in any direction would make it fall.

Flow: Change of a system. An example would be the movement
of a drop of water flowing down a hill.

Homeostatic: The tendency to maintain stability or return to a
set point after perturbation. An example would be the activity of a
thermostat. A thermostat activates heating and cooling systems to
maintain a specified temperature.

Homogeneity of model: A model is unchanging in its descrip-
tion across people; see Stationarity.

In-phase: Completely in sync. An example would be the wheels
of car when moving straight. Both wheels turn together at the same
time and same rate.

Interindividual variability: Variability between two or more
individuals. An example would be personality. People with differ-
ent personalities would behave differently. There would be a
typical range of personality among a population.

Intraindividual variability: Variability within one individual.
An example would be mood. An individual’s behavior would vary
depending on his or her mood. An individual would have a typical
range of mood.

Latent variables: Variables that were not measured usually
captured through structural equation modeling; see also Unob-
served variables.

(Appendix continues)
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Lag: The period between one event and another. In dynamical
systems, the lag between two time points is often used to model the
change of a system over time depending on the earlier state. An
autoregressive relationship is one form of lag relationship. Also
known as a time delay approach.

Limit cycles: A topological feature of a state space in which a
system changes in a constant repetition. An example would be the
seasons.

Lyapunov exponent: The numerical value of the strength of a
topological feature. The rate that a system will change toward or
away from a particular state. In geographical terms, this would be
the steepness of a slope that a marble is rolling down. Lyapunov
exponents can be calculated locally (e.g., at a set point) or globally
for the entire system. Global Lyapunov exponents are useful for
identifying certain complex behaviors (e.g., deterministic chaos).

Nonlinear: In mathematics, an equation in which the terms are
not of the first degree/order. The notion of nonlinear has generated
some confusion in that a first-order model predicting change can
generate a nonlinear pattern of change through time. We specifi-
cally use nonlinear to depict the predictor side of the equation. By
adding polynomial forms and interactions, the change equations
become able to depict more than one stable pattern with the same
equation.

Null cline: Area where only one outcome is changing at a time.
In terms of equations, the line in which change is fixed to 0 while
ignoring the other equations in the model. There are as many null
clines and dimensions to the topology.

Oscillation: Repetition over time.
Path diagrams: A diagram specifying the influence of different

parameters on other parameters of a system, often used in struc-
tural equation modeling.

Perturbation: Small changes in a system due to parts of the
system that are necessary but not modeled. They distinguish the
stability of a set point in that an attractor is resistant to perturba-
tions, while a repeller is not.

Phase portrait: A topographical representation of a state space
or phase space where the altitude dimension represents the length
of vectors. It is calculated by taking the integral of the equations
that generate the state space.

Phase space: See State space.
Repeller: An unstable state that a system or variable moves

away from in time.
Repulsiveness: The degree to which a system moves away from

a state; see Lyapunov exponent.
Saddle: Topological feature of a state space in which a system

is attractive in one direction and repulsive in the other. An example
would be a triangle-shaped roof. Rain would drip in one direction
on one side of the ridge and drip in the other direction on the other
side of the ridge.

Second-order model: An equation that includes second-order
derivatives (acceleration or differences of differences). Some
methods treat acceleration as the outcome to capture oscillatory
relationships.

Separatrice: See Saddle.
Set point: A topological feature upon which changes in a

system can be depicted relative to that point. The set point can be
defined in Cartesian coordinates of the variables that are changing
in time. An example would be the temperature setting of a ther-
mostat. When the temperature rises or falls, the thermostat acti-
vates systems to return the temperature to the set point (in this case
the set point is an attractor).

Spiral attractor: A topological feature that combines a fixed
point attractor with a limit cycle so that the state of the system
spirals toward a set point.

Spiral repeller: A topological feature that combines a fixed
point attractor with a limit cycle so that the state of the system
spirals away from a set point.

Stable state: A state from which a system is not likely to change.
An example would be a marble in the bottom of a champagne flute.
The marble is not likely to move away from its current location. These
could be attractors (or example), but they can also be patterns, such as
the limit cycle.

State space: A visual graph of arrows that show where values
change over time given where they start. Unlike a time series, time
is integrated into the figure rather than being explicit. State spaces
can be hypothetical (what our theory translates into in terms of our
expectations of change), observed (plotting an arrow of each
observed change), or implied by equations.

Stationarity: A statistical model that is unchanging in its de-
scription of a phenomenon through time; see Homogeneity of
model.

Strength (of topological feature): The degree to which a
system changes toward or away from an area of the state space; see
also Lyapunov exponent.

Torus: Three-dimensional ring/donut shape. Two second-order
equations may specify this shape as a topological feature in a state
space.

Topological feature: A specific pattern of change within the
state space of a system.

Topological map: Graphical representation of a set of equa-
tions.

Topology: The mathematics for linking maps in the form of
state spaces and phase portraits to equations of change. All the
equations generated are forms of calculus that can be expressed
with different orders of derivatives as the equation forms.

Trajectory: Direction toward which a state is changing.
Unobserved variables: Variables that were not measured; see

also Latent variables.
Vector field: See State space.
Velocity flow field: See State space.
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